

74th International Astronautical Congress

Multi-Agent 3D Map Reconstruction and Change Detection in Microgravity with Free-Flying Robots

Holly Dinkel^{1*}, Julia Di^{2*}, Jamie Santos³, Keenan Albee⁴, Paulo Borges⁵, Marina Moreira⁶, Oleg Alexandrov⁶, Brian Coltin⁶, and Trey Smith⁶

¹University of Illinois Urbana-Champaign, Urbana, IL, USA
²Stanford University, Stanford, CA, USA
³Chalmers University of Technology, Gothenburg, Sweden
⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
⁵CSIRO Data61, Brisbane, QLD, Australia
⁶NASA Ames Research Center, Moffett Field, CA, USA
*Equal contribution, Co-Presenters

CHALMERS

UNIVERSITY OF TECHNOLOGY

NASA astronaut Shane Kimbrough poses aboard the International Space Station with three Astrobee robotic free-flyers. Credit: NASA

Introduction

- Astronaut time is limited
- Future orbital outposts
 potentially uncrewed
- Astrobee robotic free-flyer as astronaut assistant
 - Automate visual surveying

Astronaut Anne McClain with an Astrobee unit. Credit: NASA

- Astrobee developed by NASA Ames for ISS operation
 - 32cm cube-shaped mobile sensor platform
- Two sensors in this work:
 - <u>NavCam</u>: fixed-focus color camera, wide field of view (1 Hz)
 - <u>HazCam</u>: depth sensor, to generate environment point clouds

Astrobees are equipped with many sensors such as the HazCam and NavCam.

T. Smith, J. Barlow, M. Bualat, T. Fong, C. Provencher, H. Sanchez, and E. Smith. "Astrobee: A New Platform for Free-Flying Robotics on the International Space Station." *In Int. Sympos. Artif. Intell. Robot. Autom. in Space (i-SAIRAS),* 2016. NASA, "Astrobee," Available: https://github.com/nasa/astrobee

- Robots need updated maps but updating robot map is expensive
 - Astrobee on ISS Japanese Experiment Module (JEM)
- More efficient to only recompute local changes

NASA, "Astrobee," Available: https://github.com/nasa/astrobee

ASTRONAUTICAL FEDERATION FAST Change Detection

- Fast Image-Based Geometric` Change Detection (FastCD)
- Fast geometric projection on small batches (<10) consecutive images
- Can be deployed in near-realtime on resource-constrained mobile robots

Stanford

E. Palazzolo, C. Stachniss, "Fast Image-Based Geometric Change Detection Given a 3D Model" in IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 6308-6315.

ASTRONAUTICAL FEDERATION

- Discussion of scene change
 detection framework on free-flyers
- Discussion of scene change detection considerations for resource-constrained robots in a space environment
- Demonstration and evaluation of method on Granite Lab and ISS data
- Open release of Granite Lab and ISS dataset

Astronaut Megan McArthur poses with an Astrobee robotic free-flyer. Credit: NASA

Related Work

2D Change Detection

3D Change Detection

T. Celik. "Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and K-Means Clustering." *IEEE Geosci. Remote Sens. Lett.*, 6(4):772–776, 2009.

(b)

(a)

UNIVERSITY OF

J. Santos, H. Dinkel, J. Di, P. V.K. Borges, M. Moreira, B. Coltin, and T. Smith. "Unsupervised Change Detection for Space Habitats Using 3D Point Clouds." In *AIAA SciTech F.*, 2024.

ASTRONAUTICAL Related Work

3D Change Detection with Images

- 3D change detection method based on sequences of images against a 3D world model
- Fast enough for a mobile system

E. Palazzolo, C. Stachniss, "Fast Image-Based Geometric Change Detection Given a 3D Model" in IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 6308-6315.

Methodology

Jet Propulsion Laboratory California Institute of Technology

- Geometric intuition for FastCD
 - Back-project image Iⁱ into 3D World model
 - Re-project Iⁱ onto image plane Iⁱ⁺¹
 - Pixelwise differences are changes
- Multi-agent:
 - One robot survey is used to construct the world model
 - One robot survey is used to detect local changes

Known 3D World Model

INTERNATIONAL ASTRONAUTICAL Methodology **FEDERATION**

FastCD computes regions of change in 3D using sequences of RGB images and their camera pose

California Institute of Technology

INTERNATIONAL **Data Collection** ASTRONAUTICAL **FEDERATION**

- Five surveys collected with an Astrobee unit in a ground test environment with "Bsharp" Astrobee
- Granite Lab
 - Paths incorporate more translation
 - 3DOF microgravity simulated with air bearings
 - Highly structured
- Six surveys collected with Astrobee units on ISS with "Bumble" and "Queen" Astrobees
- **ISS**
 - Paths incorporate more rotation
 - 6DOF microgravity is real
 - Highly cluttered

Granite Lab

Bsharp Path in Granite Lab

Bumble Path in ISS JEM

NASA, "Astrobee," Available: https://github.com/nasa/astrobee

Stanford

Universitv

*Image Credit: NASA. Available: https://www.nasa.gov/collection-asset/isaacastrobee-team-successfully-completes-11th-joint-space-station-activity

alifornia Institute of Technole

CHALMERS

NIVERSITY OF TECHNOLOGY

ASTRONAUTICAL 3D World Reconstruction

- Image data from the NavCam are registered with depth information from the HazCam using structurefrom-motion
- Depth point clouds are fused into a mesh using camera poses
- The Granite Lab 3D world model (top right) is included with the contributed dataset
- The simulated ISS JEM 3D World model (bottom right) is included with the contributed dataset

Stanford

University

R. A. Beyer, O. Alexandrov, and S. McMichael. "The Ames Stereo Pipeline: NASA's Open Source Software for Deriving and Processing Terrain Data." *Earth Space Sci.*, 5, 2018.
R. Soussan, V. Kumar, B. Coltin, and T. Smith. "AstroLoc: An Efficient and Robust Localizer for a Free-flying Robot." *IEEE Int. Conf. Robot. Autom. (ICRA)*, pages 4106–4112, 2022.
C. Sweeney. "Theia Multiview Geometry Library: Tutorial & Reference." [Online] Available: <u>http://theia-sfm.org</u>, 2023.

INTERNATIONAL Computing Inconsistencies ASTRONAUTICAL **FEDERATION**

CEM HOMIA

NIVERSITY OF TECHNOLOGY

let Propulsion Laborator California Institute of Technology

University

NASA

ASTRONAUTICAL Granite Lab Results

- Five surveys in Granite Lab
- One or more objects introduced in surveys 1-4:
 - Cable
 - Cargo Bag
 - Crate
 - Astrobee unit

Stanford

Universitv

- Change detection and object discovery in surveys 1-4
- Survey 5 used for 3D world model reconstruction

CHALMERS

DATA 61

lifornia Institute of Technolo

INTERNATIONAL ASTRONAUTICAL Compute Runtimes **FEDERATION**

CHALMERS

UNIVERSITY OF TECHNOLOGY

• Runtimes on Granite Lab data

Runtime [s]

n	Data Loading	Inconsistencies	3D Change
2	0.844	0.311	0.054
3	0.800	0.606	0.076
4	0.843	1.156	0.134
5	0.835	1.891	0.161
6	0.842	2.280	0.266
Per Image	-	≈ 0.281	-
		+	
		~5HZ	

alifornia Institute of Technolog

DATA 61

NASA

Stanford

University

ASTRONAUTICAL FEDERATION

- Two Astrobee units each perform three surveys of the JEM
- Environment was not modified

Stanford

Universitv

NASA, "ISS Activity 9 Data Release", June 8, 2022. Available: https://nasagov.app.box.com/s/4ign43svk39guhy9ev8t5xkzui6tqjm1?page=1 E. Palazzolo, C. Stachniss, "Fast Image-Based Geometric Change Detection Given a 3D Model" in IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 6308—6315.

ASTRONAUTICAL Inconsistency Filtering

NASA, "ISS Activity 9 Data Release", June 8, 2022. Available: https://nasagov.app.box.com/s/4ign43svk39guhy9ev8t5xkzui6tqjm1?page=1 E. Palazzolo, C. Stachniss, "Fast Image-Based Geometric Change Detection Given a 3D Model" in IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 6308—6315.

Conclusions

- Multiple camera and robot geometric scene change
- Improve robustness to illumination change
- Runtime analysis on embedded processors
- Compare performance of FastCD for rotation-only and translation-only images
- Compare accuracy and computation time for FastCD with other change detection methods

- FastCD estimates the location of changes in a world using a small number of images and corresponding camera poses
- FastCD can be implemented on a mobile platform for near realtime change detection to enable rapid response to anomalies in the environment
- FastCD is evaluated on Granite Lab and ISS data
- Granite Lab and ISS dataset is open-sourced
- Unlocks numerous benefits for assistive robotics
- Step towards robots in human environments

ASTRONAUTICAL ACKNOWLEDGEMENTS

CHALMERS

INIVERSITY OF TECHNOLOGY

61

alifornia Institute of Technolog

for the Advancement of Space Science Education

NASA, the Jet Propulsion Laboratory, CSIRO Data61, the Future Space Leaders Foundation, the P.E.O. Sisterhood, Zonta International, the Winston Churchill Fellowship, and the Soffen Memorial Fund funded this work. We also thank Ryan Soussan and the Astrobee Operations Team for their support.

Stanford

Universitv

Multi-Agent 3D Map Reconstruction and Change Detection in Microgravity with Free-Flying Robots

Holly Dinkel^{1*}, Julia Di^{2*}, Jamie Santos³, Keenan Albee⁴, Paulo Borges⁵, Marina Moreira⁶, Oleg Alexandrov⁶, Brian Coltin⁶, and Trey Smith⁶

¹University of Illinois Urbana-Champaign, Urbana, IL, USA
 ²Stanford University, Stanford, CA, USA
 ³Chalmers University of Technology, Gothenburg, Sweden
 ⁴Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
 ⁵CSIRO Data61, Brisbane, QLD, Australia
 ⁶NASA Ames Research Center, Moffett Field, CA, USA
 *Equal contribution, Co-Presenters

Paper

https://hollydinkel.github.io/assets/pdf/IAC2023.pdf

