

Timescale Analysis for a Standard Rotating Detonation Rocket Engine

Raj T. Dave, The University of Alabama in Huntsville (UAH)

Jason R. Burr, Air Force Research Laboratory (AFRL/RQRC)

Mathias C. Ross, The University of California, Los Angeles (UCLA)

John W. Bennewitz, The University of Alabama in Huntsville (UAH)

29th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS)

July 24, 2023

- Introduction / Motivation
 - Overview
- Hardware Specifications
 - AIAA Model Validation for Propulsion
- Characteristic Timescale Models
 - Chamber Flow Considerations
 - Chemical
 - Acoustic / Operating
 - Injection-Detonation Coupling
- Conclusions

Detonation-Based Combustion Overview

Rotating Detonation Combustion: New Propulsion Cycle

- Supersonic combustion-driven shock
- Shock acts as compressor/pump → Higher local combustion pressure → High volumetric energy/power density
- More useful work available

Rotating Detonation Rocket Engines (RDRE's)

- Annular combustion geometry
- Detonation wave travels continuously around channel
- Mechanically simple and compact

THE UNIVERSITY OF

ALABAMA IN HUNTSVILLE

Model Validation for Propulsion Hardware

- RDREs involve additional complex processes than traditional rocket engines
- Five primary categories:
 - 1. Flow processes
 - 2. Chemical kinetics
 - 3. Operating mode
 - 4. Acoustic resonance modes
 - 5. Injection recovery
- Multiple of these timescales can couple and affect overall engine performance

- Equivalence ratio ranges from ϕ = 1.1 to 2.5, and total mass flow rates from \dot{m}_{tot} from 0.272 to 0.363 kg/s
- Residence times $\tau_{\rm res}$ range from 3.25 to 2.5 ms
 - Sufficiently large to allow injection, mixing and detonation to take place within chamber
 - Insensitive to changes in mass flow rate due to thermal choking condition

_

ZND Detonation Structure

- Zeldovich-von Neumann-Döring (ZND) detonation structure is normal shock followed by reaction zone

- Three detonation chemical timescales: $\tau_{ind,det}$, $\tau_{rxn,det}$, $\tau_{chm,eq,det}$
 - All timescales able to be determined from ZND solution using in-house Cantera solver

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. AFRL-2023-3112

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

- All chemical timescales are determined from Zeldovich-von Neumann-Döring (ZND) solution using in-house Cantera solver
 - All chemical timescales are exponentially temperature dependent
- (1) Detonation Induction Time, $\tau_{ind,det}$
 - Chemical Induction time within detonation zone
- (2) Detonation Reaction Time, $\tau_{rxn,det}$
 - Time for majority of the exothermic reactions to occur within detonation zone
- (3) Detonation Chemical Equilibrium Time, $\tau_{eq,det}$
 - Time for products to reach 99% of equil. concentrations

• Chemical timescales are minimized at $\phi = 1.1$, corresponding to highest RDRE performance

THE UNIVERSITY OF

ALABAMA IN HUNTSVILLE

THE UNIVERSITY OF ABAMA IN HUNTSVILLE OPPORTATING Mode / Acoustic Timescales

- Experimentally observed detonation modes for MVP hardware ranged from m = 2-3, with $\tau_{wv,arrv} \approx 45-65 \,\mu s$
- Longitudinal and transverse acoustic time periods are calculated using linear acoustic model
 - Implements acoustic boundary conditions, i.e., hard wall for chamber and either closed/open for combustor inlet/outlet
- Transverse mode resonance time period for n = 2-3 correspond to $\tau_{n,q,trans} = 83$, 55 µs, respectively

Injector Model: Wave Profile / Recovery Process

- Four processes modeled:

(1) Choked/unchoked reactant forward flow

(2) Unchoked/choked reverse product ingestion

(3) Unchoked/choked reverse product expulsion (fixed mass)

(4) Choked/unchoked reactant recovery

Synthetic detonation wave profiles are generated using a combination of the ZND solution and expansion profile from Kaemming et al.* (mod. using RDRE M&S).

Three injection recovery timescales:

 τ_{inj,rvsl}, τ_{inj,supp}, τ_{inj,rcv}

Distribution Statement A: Approved for Public Release; Distribution is Unlimited. AFRL-2023-3112

THE UNIVERSITY OF

ALABAMA IN HUNTSVILLE

- Inj. pressure stiffness ratio for MVP injector ranges from $\beta \approx 2-3.5$
- Injection recovery timescales
- (1) Flow reversal time, $\tau_{inj,rvsl}$
 - Time required for forward flow to resume
- (2) Flow suppression time, $\tau_{inj,suppr}$
 - Time required for reactant injection after product ingestion and expulsion
- Respective recovery times are on the order of ~10-100 µs, which is sufficiently long compared to wave arrival times

Timescale Summary for MVP RDRE

- Timescales for various RDRE chamber processes span very large ranges from ~1 ns to 3 ms
 - Chemical timescales are shortest
 - Chamber residence time is longest (by design)
 - Operating mode, transverse acoustic, and injection recovery all range from ~10 to 100 µs, making them able to directly couple
- Elongated injection recovery timescales cause non-idealized detonation behavior at lower strength
 - Elevated performance will correspond to minimized injection recovery (to permit more

time for reactant mixing)

- Characteristic timescales of the model validation for propulsion (MVP) RDRE for various processes including (1) flow, (2) chemical kinetics, (3) operating mode, (4) acoustic resonance modes, and (5) injection recovery
- All chemical timescales are exponentially temperature dependent and are minimized for experimentally validated maximum performance
- Wave arrival times detonation mode corresponds with the transverse acoustic mode time period for n = 2, 3 waves
- Injection recovery timescales are sufficiently long ($\approx 100 \ \mu s$), which produces nonidealized, lower strength detonation due to reactant inhomogeneities

- Travel funds for Raj Dave has been provided in part by the **Dr. Gerald A. Soffen Memorial Fund**

THE UNIVERSITY OF

ALABAMA IN HUNTSVILLE

15

Backup Charts

 Any time there a travelling acoustic wave sees a geometric area change, it will result in both a transmitted and reflected wave due to change in acoustic impedance

<u>Acoustic Impedance</u>: $z = \frac{p'(x,t)}{u'(x,t)}$

- Complex Parameter (Both Re. & Im. Components)
- Bounded between z = 0 to $z \rightarrow \infty$

Typical Boundary Conditions:

Hard Wall Boundary:
$$z = \frac{p'(x,t)}{u'(x,t)} \rightarrow \infty, \therefore u'(x,t) = 0$$

- Complete Reflection (no absorption)
- No phase shift for reflected wave
- Normal velocity is zero
- For low mean *M* flow, choked BC can be approx. as hard wall

Open Boundary:
$$z = \frac{p'(x,t)}{u'(x,t)} = 0$$
, $\therefore p'(x,t) = 0$

- 180° phase shift for reflected wave
- Total oscillatory pressure is zero

Resonant Frequency Summary: Common Geometries

18

THE UNIVERSITY OF

ALABAMA IN HUNTSVILLE