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Motivation — Figures from [5]

The Earth Observation Satellite
Scheduling Problem (EOSSP) [1, 2, 3]

Optimization problem for scheduling
tasks of Earth-observing satellites
Maximize observation rewards
Requires the visible time window (VTW)

The standard EOSSP assumes
nadir-directional satellites

VTW Time

The Agile EOSSP (AEOSSP), current
state-of-the-art

Addition of satellite agility, the ability
to perform attitude control [4]
Optimize observation rewards
Extends the VTW of targets

Provides higher performance than
standard EOSSP

VTW Time

Cross-track slewing
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Current Cutting-Edge and Preliminary Research

Constellation Reconfigurability, satellites are able to perform orbital maneuvers, reforming
into a more optimal constellation formation [6], is the current cutting-edge.

Multistage Constellation Reconfiguration Problem
(MCRP) [7]

Maximize observation rewards

Subject to target VTWs, time-dependent
rewards, and an orbital maneuver budget

Mixed Integer Linear Programming (MILP)

Paths

VTW Time

Maneuver

Figure from [5]

Refs. [8, 5]

Constellation reconfigurability
outperformed agility in 95 of 100
cases, average of 35.93% over agility

Constellation reconfigurability had an
average increase of 324.92% over the
baseline

Serves as a proof of concept that
reconfigurability is promising in EO
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Main Objectives

Implement constellation reconfigurability to the EOSSP

Control constellation reconfigurability in a similar manner to the MCRP

Employ MILP techniques to achieve implementation, flexibility, and provably optimal
solutions through the use of commercial solvers

Overcome the current state-of-the-art limitations [1, 2, 3, 4, 9, 10, 11, 12] to provide a
major advancement in the results of a scheduling algorithm

Benchmark against a baseline EOSSP in two formats of experimentation

1. Random instances
2. Case study with Hurricane Rita
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Technical Contributions
Multi-satellite recon-guration at t0 Target observation at t1

Single satellite recon-guration
and charging at t2 Data downlink at t3

Target Ground station (GS) Satellite (Sat) Current orbit Targeted orbit
"V direction Target observation GS downlink Solar pointing (charging)

Battery Data Fuel

Sat 1

Sat 2

Battery Data Fuel

Sat 1

Sat 2

Battery Data Fuel

Sat 1

Sat 2

Battery Data Fuel

Sat 1

Sat 2
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Parameters

Sets:

Set of discrete time steps T (index t)

Set of stages S (index s)

Set of time steps per stage T s (index t)

Set of satellites K (index k)

Set of orbital slot options per satellite and
stage J sk (indices i, j)

Set of targets P (index p)

Set of ground stations G (index g)

Other Parameters:

Target visibility V sk
tjp ∈ {0, 1}

Ground station visibility W sk
tjg ∈ {0, 1}

Sun visibility Hsk
tj ∈ {0, 1}

Maximum orbital maneuver budget, ckmax ≥ 0

Cost to transfer satellite k from orbital slot i ∈ J s−1,k to
orbital slot j ∈ J sk, cskij ≥ 0

Maximum data and battery capacity, Dk
max ≥ 0 and

Bk
max ≥ 0, respectively

Data gained through observations, Dobs ≥ 0, and Data
transmitted through downlink, Dcomm ≥ 0

Battery charged by solar panels, Bcharge ≥ 0

Battery consumed by observation, data downlink,
reconfiguration, and constant telelmetry calculations,
Bobs ≥ 0, Bcomm ≥ 0, Brecon ≥ 0, and Btime, respectively
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Objective Function, Decision Variables, and Indicator Variables

Decision variables - tasks:

Reconfiguration path - (1a)

Observation of targets - (1b)

Downlink of data to ground
stations - (1c)

Solar charging - (1d)

Indicator variables - trackers:

Data storage capacity - (2a)

Battery storage capacity - (2b)

Objective function

maximize ZR =
∑
k∈K

∑
g∈G

∑
s∈S\{0}

∑
t∈T s

Dcommq
sk
tg

Decision variables

x
sk
ij ∈ {0, 1}, ∀s ∈ S \ {0}, ∀k ∈ K, ∀i ∈ J s−1,k

, ∀j ∈ J sk (1a)

y
sk
tp ∈ {0, 1}, ∀s ∈ S \ {0}, ∀t ∈ T s

, ∀p ∈ P, ∀k ∈ K (1b)

q
sk
tg ∈ {0, 1}, ∀s ∈ S \ {0}, ∀t ∈ T s

, ∀g ∈ G, ∀k ∈ K (1c)

h
sk
t ∈ {0, 1}, ∀s ∈ S \ {0}, ∀t ∈ T s

, ∀k ∈ K (1d)

Indicator variables

d
sk
t ∈ [0, D

k
max], ∀s ∈ S \ {0}, ∀t ∈ T s

, ∀k ∈ K (2a)

b
sk
t ∈ [0, B

k
max], ∀s ∈ S \ {0}, ∀t ∈ T s

, ∀k ∈ K (2b)
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Reconfiguration Path Continuity Constraints

Transfer from one initial condition to one orbital slot (3a), transfer from one orbital slot to
another only if satellite transferred there previously (3b), transfers cannot exceed budget (3c)

𝒥1𝐾

𝒥11

𝑘 = 𝐾

𝑘 = 1

Satellite
Stage 𝑠 = 0 𝑠 = 1 𝑠 = 2 𝑠 = 𝑆

𝒥01

𝒥0𝑘

𝒥0𝐾

𝒥1𝑘

𝒥2𝐾

𝒥21

𝒥2𝑘

𝒥𝑆𝐾

𝒥𝑆1

𝒥𝑆𝑘𝒥𝑠𝑘

𝑡 = 1𝑡 = 0 𝑇𝑠 (𝑠 − 1)𝑇𝑠 𝑇
Time

(𝑆 − 1)𝑇𝑠 ∑
j∈J1k

x
1k
ij = 1,

∀k ∈ K, ∀i ∈ J 0k

(3a)

∑
j∈Js+1,k

x
s+1,k
ij −

∑
j′∈Js−1,k

x
sk
j′i = 0,

∀s ∈ S \ {0, S}, ∀k ∈ K, ∀i ∈ J sk

(3b)

∑
s∈S\{0}

∑
i∈Js−1,k

∑
j∈Jsk

c
sk
ij x

sk
ij ≤ c

k
max,

∀k ∈ K
(3c)
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Visible Time Window Constraints

Visibility of target (4a), visibility of ground stations (4b), visibility of the Sun (4c), task overlap
exclusion (4d)

𝑡1

𝑡

𝑡

𝑡

𝑡

𝑊𝑡𝑗𝑔
𝑠𝑘

𝑉𝑡𝑗𝑝
𝑠𝑘

𝑦𝑡𝑝
𝑠𝑘

𝑞𝑡𝑔
𝑠𝑘

𝑡2 𝑡3 𝑡4

∑
i∈Js−1,k

∑
j∈Jsk

V
sk
tjpx

sk
ij ≥ y

sk
tp ,

∀s ∈ S \ {0}, ∀t ∈ T s
, ∀p ∈ P, ∀k ∈ K

(4a)

∑
i∈Js−1,k

∑
j∈Jsk

W
sk
tjgx

sk
ij ≥ q

sk
tg ,

∀s ∈ S \ {0}, ∀t ∈ T s
, ∀g ∈ G, ∀k ∈ K

(4b)

∑
i∈Js−1,k

∑
j∈Jsk

H
sk
tj x

sk
ij ≥ h

sk
t ,

∀s ∈ S \ {0}, ∀t ∈ T s
, ∀k ∈ K

(4c)

∑
p∈P

y
sk
tp +

∑
g∈G

q
sk
tg ≤ 1,

∀s ∈ S \ {0}, ∀t ∈ T s
, ∀k ∈ K

(4d)
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Onboard Data Storage Constraints

Tracking in stages (5a), tracking between stages (5b), must not exceed maximum (5c), must
not exceed minimum (5d)

𝑡

𝑡

𝑡

𝑦𝑡𝑝
𝑠𝑘

𝑞𝑡𝑔
𝑠𝑘

𝑑𝑡
𝑠𝑘

𝐷𝑚𝑎𝑥
𝑘

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5

d
sk
t+1 = d

sk
t +

∑
p∈P

Dobsy
sk
tp −

∑
g∈G

Dcommq
sk
tg ,

∀s ∈ S \ {0}, ∀t ∈ T s \ {T s}, ∀k ∈ K
(5a)

d
s+1,k
1 = d

sk
Ts +

∑
p∈P

Dobsy
sk
Tsp −

∑
g∈G

Dcommq
sk
Tsg,

∀s ∈ S \ {0, S}, ∀k ∈ K
(5b)

d
sk
t +

∑
p∈P

Dobsy
sk
tp ≤ D

k
max,

∀s ∈ S \ {0}, ∀t ∈ T s
, ∀k ∈ K

(5c)

d
sk
t −

∑
g∈G

Dcommq
sk
tg ≥ 0,

∀s ∈ S \ {0}, ∀t ∈ T s
, ∀k ∈ K

(5d)
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Onboard Battery Constraints

Tracking in stage (6a), tracking between stages (6b), tracking
at stage one (6c)

b
sk
t+1 = b

sk
t + Bchargeh

sk
t −∑

p∈P
Bobsy

sk
tp −

∑
g∈G

Bcommq
sk
tg − Btime,

∀s ∈ S \ {0}, ∀t ∈ T s \ {T s}, ∀k ∈ K

(6a)

b
s+1,k
1 = b

sk
Ts + Bchargeh

sk
Ts−∑

p∈P
Bobsy

sk
Tsp −

∑
g∈G

Bcommq
sk
Tsg−

∑
i∈Jsk

∑
j∈Js+1,k

Breconx
s+1,k
ij − Btime,

∀s ∈ S \ {0, S}, ∀k ∈ K

(6b)

b
1k
1 = B

k
max −

∑
i∈J0k

∑
j∈J1k

Breconx
1k
ij , ∀k ∈ K

(6c)

Must not exceed maximum (7a), must not exceed minimum in
stage (7b), between stages (7c), at stage one (7d)

b
sk
t + Bchargeh

sk
t ≤ B

k
max,

∀s ∈ S \ {0}, ∀t ∈ T s
, ∀k ∈ K

(7a)

b
sk
t −

∑
p∈P

Bobsy
sk
tp −

∑
g∈G

Bcommq
sk
tg − Btime ≥ 0,

∀s ∈ S \ {0}, ∀t ∈ T s \ {T s}, ∀k ∈ K
(7b)

b
sk
Ts −

∑
p∈P

Bobsy
sk
Tsp −

∑
g∈G

Bcommq
sk
Tsg−

∑
i∈Jsk

∑
j∈Js+1,k

Breconx
s+1,k
ij − Btime ≥ 0,

∀s ∈ S \ {0, S}, ∀k ∈ K

(7c)

B
k
max −

∑
i∈J0k

∑
j∈J1k

Breconx
1k
ij ≥ 0, ∀k ∈ K

(7d)

Developing the REOSSP — AIAA SciTech Forum 13/30



Introduction The Reconfigurable Earth Observation Satellite Scheduling Problem Experimentation Conclusion References Support

Full REOSSP Formulation
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Random Instance Setup

54 instances with randomized parameters

Time horizon of 10 days

MATLAB [13] used in conjunction with
YALMIP [14] to program simulations

Gurobi Optimizer (version 11.0.2) used to
solve each scheduling problem

Fixed parameters:

Conical observation field of view of 45 deg

Conical communication field of view of
120 deg

Binary masking of targets on interval T/P

Randomized parameters:

Targets (5 or 10)

Latitude between 80 deg South and
80 deg North
Longitude between 180 deg West and
180 deg East

Stages (4, 5, or 6)

Satellites (4, 5, or 6) in circular orbits

Altitude between 600 km and 1200 km
Inclination between 40 deg and 80 deg
RAAN between 0 deg and 360 deg
Argument of latitude between 0 deg and
360 deg

Transfer orbital slots (20, 40, or 60)

G.s. (2), random locations on land
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Random Instances

Results with 750m/s fuel budget, 102.5MB observation, and 100MB downlink:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Random instance, ID

0

2

4

6

8

10

12

14

16

O
bj

ec
tiv

e 
va

lu
e,

 G
B

EOSSP
REOSSP

Improvement, %
Avg. 96.59
SD 34.67
Max. 213.04
Min. 29.58
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Case Study - Hurricane Rita

In 2005, Hurricane Rita struck the southern United States at Category Five, causing $18.5
billion in damage and 120 deaths [15]. From the first to the final occurrence of tropical storm
status (39 to 73 mph [16]), Rita lasted 6.5 days.

Figure 1: Case study parameters [17, 18].

Results

Changed Parameters:

Set g.s. in Boecillo, Spain, and Svalbard, Sweden

Additional plane change orbital slots

Trajectory optimization

EOSSP, GB REOSSP, GB Improvement, %
1.10 2.90 163.64
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Conclusions

Key takeaways

1. REOSSP outperforms EOSSP in every
case, including real-world data

2. EOSSP and REOSSP consider target
visibility, data and battery storage
tracking, data downlink, and solar charging

3. REOSSP obtains provably optimal results
through the use of MILP and commercial
solvers

4. REOSSP implements a cutting-edge
concept of operation (constellation
reconfigurability) to provide a major
breakthrough in scheduling technology

Future Work:

Additional case studies

Wildfires (longer time horizon, less
dynamic)
Flooding caused by Tsunamis
(mid-length time horizon, less dynamic)

Additional solution algorithms

Rolling Horizon Policy (category of
Model Predictive Control) with a set
stage lookahead
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Full EOSSP Formulation
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Experiment Parameters

Hardware:

Dk
max = 128GB,∀k ∈ K [19]

Dobs = 102.5MB [20]

Dcomm = 100MB [19]

Bk
max = 1647 kJ,∀k ∈ K [19]

Bobs = 16.26 kJ [20]

Bcomm = 1.2 kJ [19]

Brecon = 0.5 kJ [19]

Bcharge = 41.48 kJ [19]

Btime = 2 kJ [19]

Propagation:

Visibility matrices V and W are generated
using the access function from the
Aerospace Toolbox [13]

Visibility matrix H is generated using the
eclipse function from the Aerospace
Toolbox [13]

Orbital maneuver cost matrix cskij
generated using algorithms from Ref. [21]

Propagation via SGP4 (Simplified General
Perturbation 4) model
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Random Instance Percent Improvement
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Random Instance Runtime

232.71 ! 101.46 ! 104.88 !
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Case Study Parameter Changes

Visibility masking:

V k
tp =


1, if target p ∈ P is visible to satellite k ∈ K at time t ∈ T ,

and t ∈ [1 + (p− 1)(T/P ), p(T/P )]

0, otherwise

V sk
t′jp =



1, if, during stage s ∈ S \ {0}, target p ∈ P
is visible at time t′ ∈ T s

to satellite k ∈ K in orbital slot j ∈ J sk,

and t ∈ [1 + (p− 1)(T/P ), p(T/P )]

0, otherwise

t′ ∈ T s if t ∈ [1 + (s− 1)T s, sT s]
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Orbital Slot Distribution (Case Study)
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N-impulse Trajectory Optimization

Equations

min
N∑

n=1

Vn (8a)

s.t.
N∑

n=1

Vn ≤ cmax (8b)

√
V 2
xn + V 2

yn + V 2
zn = 1, ∀n ∈ {1, 2, . . . , N} (8c)

||Rn|| ≥ Rmin, ∀n ∈ {1, 2, . . . , N} (8d)

Vxn, Vyn, Vzn ∈ [−1, 1], ∀n ∈ {1, 2, . . . , N} (8e)

Vn ∈ [0, cmax], ∀n ∈ {1, 2, . . . , N} (8f)

τ ∈ [τmin, τmax] (8g)

Constraints

Minimize total impulse cost (8a)

Total impulse cost under the
budget (8b)

Magnitude of directional
components is one (8c)

Trajectory obeys minimum altitude
(8d)

Directional components in any
direction (8e)

Each impulse is between zero and
the budget (8f)

Time between τmin and τmax (8g)
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